
ChRIS: An OpenSource Containerized Service for Pipelining
Clinical and Research Computation

Rudolph Pienaar1,2, Jorge Bernal-Ruisel1, P Ellen Grant1,2, Daniel McPherson3, Ravisantosh Gudimetla3,
Ata Turk4, Orran Krieger5

 1Fetal-Neonatal Neuroimaging and Development Science Center, Childrens Hospital Boston
2Harvard Medical School, Boston, MA; 3Red Hat, Inc, Boston, MA; 4Mass Open Cloud, Boston, MA; 5Boston University, Boston, MA

1)Jorge L. Bernal-Rusiel, Nicolas Rannou, Randy L. Gollub, Steve Pieper, Shawn Murphy, Richard Robertson, Patricia E. Grant, and Rudolph
Pienaar. Reusable client-side javascript modules for immersive web-based real-time collaborative neuroimage visualization. Frontiers in
Neuroinformatics, 11:32–40, 2017

2)Daniel Haehn, Nicolas Rannou, Banu Ahtam, Ellen Grant, and Rudolph Pienaar. Neuroimaging in the browser using the x toolkit. In
Frontiers in Neuroinformatics Conference Abstract: 5th INCF Congress of Neuroinformatics (Munich), 2014.

3)Rudolph Pienaar, Jorge Bernal, Nicolas Rannou, P.E. Grant, Daniel Haehn, Ata Turk, and Orran Krieger. Architecting and Building the Future of
Healthcare Informatics: Cloud, Containers, Big Data and CHIPS. In Proceedings of the Future Technologies Conference, November, Vancouver,
Canada, 2017.

4)N. Rannou, J.L. Bernal-Ruisel, D. Haehn, P. E. Grant, and R. Pienaar. Medical Imaging in the Web Browser with the A* Medical Imaging (AMI)
toolkit. In Proc. of European Society of Magnetic Resonance in Medicine and Biology, 2017.

i n t r o d u c t i o n

a r c h i t e c t u r e

This work presents a cloud-based solution designed to address the needs
of data accessibility, and portable computing. ChRIS allows for pervasive
anonymization, sharing of data, and powerful remote analytics. The
system is designed using a micro-services model with pervasive
containerization and provides a strong platform for future informatics.

u i / x

c o n c l u s i o n

rudolph.pienaar@childrens.harvard.edu

Figure 1. ChRIS overview
schematic showing the main

logical components

Figure 4. ChRIS plugins have an JSON

Figure 8. Visualizing pulled and processed data in the
default and specialized

viewers

I

The recursively named ChRIS, or ChRIS Research Integration
System, platform is a novel solution geared at addressing the
pressing need in computational medical research for a powerful,
effective, developer friendly, and completely opensource vehicle for
disseminating data and research computation.ChRIS is built to
bridge the gap between research and clinical words from a
computation perspective and aims to create a community of
algorithm-developing scientists, foster collaboration, and greatly
accelerate the development and use of computational tools by the
medical-scientific and clinical communities. No other platform offers
the depth of potential to effect a lasting impact on scientific
computation in the “cloud” age. ChRIS builds on much prior work in
web-based visualization and remote processing [1-4].

The main ChRIS logical
components are shown
in Figure 1 and exist
primarily to distribute
and manage self-
contained computational
elements called
“plugins”. The different
“cloud” graphics denote
separate networks
and/or clouds.

Within ChRIS, the term “plugin” is used to denote the actual encapsulated
compute (or program) that is being scheduled, run, and disseminated by the
platform. A “plugin” is the irreducible atomic building block of ChRIS. As
shown in Figure 1, these “plugins” are the “remote compute” circles within
the separate clouds.

Visually,the ChRIS UI presents
a tree-graph overview of
processing nodes (each node
is a plugin), and the edges
connecting them represent data
(information flows from the
output directory of one plugin
node to the input directory of
the next connect downstream
node) – see Figure 7.

All plugins are required to create all their output
within a single directory, O, and for DS plugins,
also read all data from an input directory, I.
ChRIS guarantees to provide some directory with
input and guarantees that the contents of the
output directory will be registered by the system.
Plugins can be grouped together into tree graphs
– subcomponents of a tree can be encapsulated
into pipelines as shown in Figure 5.

A plugin is a standalone command line executable program that once
initialized, runs with no user interaction. Plugins are in fact fully realized
containerized compute that can be run independently of ChRIS, a significant
characteristic which has important real world implications.

Plugins are of two types, FS (Feed-Synthesis) plugins
that create output data based on non-filesystem input
(e.g. a database query such as a Hospital PACS or
similar resource), and DS (Data-Synthesis) plugins that
create output based on parsing data contained explicitly
in a single filesystem directory, as shown in Figure 2.
Plugins also have a corresponding JSON representation,
as shown in Figure 4.

The core of the system
consists of the main ChRIS
backend – CUBE, or the
ChRIS Underlying Back End
– and the coordinator,
running typically on the
same system. On remote
systems are two services:
the datahandler for data
transfers; and for job exec,
the computehandler.

CUBE sends instructions to the coordinator on data and compute. In
turn, the coordinator communicates with a remote datahandler, sending it
the data to be processed, and asks the computehandler to schedule some
defined analysis on this data. The coordinator then, when asked by
CUBE, checks on the status of the remote analysis, and returns and
registers results

Internally, on the MOC,
plugins are contained
within a Job context,
initialized by an Init
Container that presents
a file system analog to
the plugin. On
completion, a Publish
Container handles the
details of storing results
in Swift storage – see
Figure 6.

Complex visualization per-node output is also handled by the UI. A baseline viewing
experience is available and more complex / stand alone viewers can also be added to
the system.

The UI dashboard provides an intuitive mechanism
to add new nodes (plugins) to a processing flow,
and also generate/define a subset of the tree as a
re-usable pipeline. For a given node, the actual
flags that are contextual to its behaviour are
accessible and can be set by the user.

Figure 2.
Logical ChRIS

architecture

Figure 6. Remote compute
Architecture on the MOC

Figure 7. The ChRIS UI

c o m p u t e

Figure 3.
ChRIS plugin types

Figure 5. A ChRIS Feed
is a complete tree structure.

A sub-collection of
connected plugins can

be grouped into a
pipeline (orange)

	Slide 1

