Fetal Subplate Surfaces Using the ASP Algorithm

Jennings Zhang, Student Intern at FNNDSC

Supervisors: Lana Vasung¹, Claude Lepage², Kiho Im¹, Hyukjin Yun¹

¹Boston Children's Hospital. Boston, MA

²McGill Centre for Integrative Neuroscience, Montréal, QC

Fetal-Neonatal Neuroimaging and Developmental Science Center

Transient Fetal Sublayers

- Temporary subcortical layers
- Subplate (SP) neurons guide thalamocortical fibers and corticogenesis
- Subplate zone visible on MRI between 15-32 gestational age
- Disappears after 32 GA

Raguž, M., Fischi-Gómez, E., Karama, S., Huppi, P.S. and Evans, A.C., 2016. Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development. *Frontiers in neuroanatomy*, *10*, p.11.

Old Pipeline

- Ex-vivo post-mortem
- Errors with 26-32 GA

In-utero MRI Pipeline

Data Acquisition

- 1. T2-weighted MRI scan 42 Subjects, 14 with subplate
- 2. Automatic segmentation Post-processing resolution: 0.8 mm
- 3. Manual corrections Operational bottleneck

Surfaces

- 4. Extract white/gray boundary marching_cubes.pl
- 5. Fit WM surface out to CP CLASP
- 6. Fit WM surface down to IZ surface_fit

Surface of intermediate zone

81,920 triangles

Automatic Correction

of Segmentation

Files	Input: Final_Labels_{LEFT,RIGHT}.mnc Output: patched segmentation volume (*.mnc)					
Algorithm	Mark regions where subplate is discontinuous Fill one voxel inside the subplate/intermediate zone boundary					
Outcome	Discontinuous subplate on lateral surface is corrected (biologically accurate)					

5.606 Yw= - 1.28

)0

)0

)0

)0

Files	Input: labels.mnc, surface.obj Output: exclusion_mask.txt					
Algorithm	Find boundary where the intermediate zone is in direct contact with background/CSF Mark nearby vertexes to be excluded					
Result	Text file denotes which vertexes to exclude from calculations					

diemesh.py

IZ Segmentation in Contact with Background/CSF

Surface Reconstruction using Marching Cubes

Surface Reconstruction: Marching Cubes

By Jmtrivial - Own work, GPL, https://commons.wikimedia.org/ w/index.php?curid=1282165

Sphere Interpolation

Mesh Deformation with a Radial Distance Map

- Voxel intensities indicate distance from target surface
- Mesh vertexes take discrete steps in direction of gradient

Gray/white matter boundary (outer surface of subplate)

Intermediate zone (inner surface of subplate)

Convoluted Morphology to Flat Inner Surface

Sharp increase in vertex density where the change in thickness is severe

depth_potential -area_simple

Risk of self-intersection

First Derivative of Curvature as a Definition of Smoothness Error

Figure CC BY-NC-ND 3.0 from http://brickisland.net/cs177/?p=144

pybicpl

- Python support for MNI .obj file format
- File read and write
- Vertex neighbor graph to calculate local changes in metric

 $\mu_{V} = \frac{|M_{v} - M_{0}| + |M_{v} - M_{1}| + |M_{v} - M_{2}| + |M_{v} - M_{3}| + |M_{v} - M_{4}| + |M_{v} - M_{5}|}{C}$

6

 $\Delta M = |M_{\nu} - M_0|$

(

 ΔM

3

5

Smoothness Error

- Local neighborhood difference average of mean curvature
- Metric of surface *quality*
- Highlights problematic creases visually

Self-intersection Check Causes Crinkles

Downsizing Number of Polygons

Safer to Fit

Subdivision to Restore 81,920 Polygons

Distortion Angles

Distortion Angle is expected to be closer to 90° where local change in sulcal depth is large.

2.77 2.08

0.00

```
echo Step 81920: 400 / 500 sw=20, Schedule row 1 / 1
surface fit -mode two -surface  wm 81920.obj wm 81920.obj -stretch 20 /tmp/mcubes-BxAMKi/w
hite model tmp.obj -.9 0 0 0 -laplacian /tmp/mcubes-BxAMKi/simple chamfer.mnc 8e-06 0 10
4250318941 0.008  -self intersect 464.158883361278 0.007  -self intersect 3593.81366380462
elf_intersect 1668100.53720006 0.003   -self_intersect 12915496.6501488 0.002   -self_inters
Surface 0: Using model /tmp/mcubes-BxAMKi/white model tmp.obj scaled by 0.380078 for stre
phi res(40962) = 0.13144 min = 9.0146 max = 11.4842
Initial:
               0.0151582 S:0.01008 I:1.592e-08 (0.006554) L:0.005078
                  S:0.01008 I:2.818e-08 (0.00619) L:0.005078
Iter 1: 0.0151580
phi res(40962) = 0.131439 min = 9.01465 max = 11.4842
Iter 2: 0.0151578
                  S:0.01008 I:3.711e-08 (0.006261) L:0.005078
phi res(40962) = 0.131438  min = 9.01471  max = 11.4842
Iter 3: 0.0151575
                  S:0.01008 I:4.817e-08 (0.006114) L:0.005078
Iter 4: 0.0151536
S:0.01008 I:4.825e-08 (0.005883) L:0.005074
Iter 6: 0.0151527
                  S:0.01008 I:4.375e-08 (0.00617) L:0.005074
Iter 7: 0.0151519
Iter 8: 0.0151515
                  S:0.01008 I:1.773e-07 (0.005305) L:0.005073
phi res(40962) = 0.131414  min = 9.01574  max = 11.4843
Iter 9: 0.0151500
                  S:0.01008 I:2.015e-09 (0.007842) L:0.005072
Iter 10: 0.0151500
                  S:0.01008 I:5.083e-09 (0.007399) L:0.005072
Iter 11: 0.0151498
Iter 12: 0.0151493
                  S:0.01008 I:7.93e-09 (0.006954) L:0.005072
phi res(40962) = 0.131404  min = 9.01621  max = 11.4843
Iter 13: 0.0151487
                  S:0.01008 I:4.497e-10 (0.008339) L:0.005072
phi_res(40962) = 0.1314 min = 9.01634 max = 11.4843
Iter 14: 0.0151511
                  S:0.01008 I:7.277e-08 (0.00594) L:0.005074
phi res(40962) = 0.131398  min = 9.01641  max = 11.4843
Iter 15: 0.0151510
                  S:0.01008 I:6.551e-08 (0.005848) L:0.005074
Iter 16: 0.0151507
                  S:0.01008 I:3.695e-08 (0.006264) L:0.005074
phi res(40962) = 0.131396  min = 9.01651  max = 11.4843
Iter 17: 0.0151504
phi res(40962) = 0.131394  min = 9.01659  max = 11.4844
Iter 18: 0.0151497
                  S:0.01008 I:3.774e-10 (0.008431) L:0.005073
```

ASP Parameters

Stretch, Laplacian, Self → Accuracy, Quality, Error

		2e-5,				
		2e-4,				
		5e-5,				
		3e-6,				

1.0e-3

Laplacian Weight

Stretch Weight Regulates Vertex Distribution

sw=400

sw versus l_w

- Python scripts to run many jobs (like 9,000) in parallel
- Multi-threaded data processing
- Averages data while deallocating individual points
- Results are cached
- Multi-variable relations visualized
 with matplotlib

Vertex Distribution

Artificial Sulci for Maximum sw

"Sulci" intrusion is 8 voxels long 2 voxels wide 4 voxels deep (1 voxel = 0.8 mm)

Low I_w overcomes folding

0010_s2 right

Green

Optimal I w weight given sw=300

Optimal I_w Depends on Age

Laplacian weight

Variation in Subplate Thickness Increases with Gestational Age, r=0.94

parm.py: Spherical Parametric Functions

Spherical Function given by $r(\theta, \varphi)$ \rightarrow .obj mesh using a Python script \rightarrow MINC volume using surface_mask2

D: amplitude (akin to sulcal depth)

cortical_thickness -tlink iz_81920.obj wm_81920.obj subplate_thickness.txt